A DIY playbook for spinning up a multi‑agent workflow using nothing but free, open‑source tools — ideal for cash‑strapped startups, weekend hackers and privacy‑sensitive teams.

Why “micro” orchestration?

  • Zero cloud fees — run everything on a single laptop or a $5‑month VPS.
  • Data stays local — no PII leaves your box.
  • Full hackability — every layer is MIT or Apache‑licensed, so you can dive into the code.

The idea is to replace pay‑per‑token SaaS stacks with local inference + open‑source tooling, while still enjoying agent‑level coordination.

The FOSS Component Menu

LayerPick‑1 ToolLicenceWhy It Fits
LLM inferencellama.cpp + Mistral‑7BMIT / Apache‑2.07 B model runs on a mid‑range GPU or even CPU; full local control 
Model gatewayLiteLLM ProxyMITOne OpenAI‑style endpoint for 100 + models, plus cost & guard‑rails 
Agent graphLangGraphMITGraph‑native orchestration; open‑source core, no vendor lock‑in 
(Alt.)CrewAIMITLightweight, LangChain‑free multi‑agent framework 
Memory / Vector DBChromaApache‑2.0Drop‑in, serverless, zero cost 
(Scale option)MilvusApache‑2.0Handles billions of vectors when you outgrow Chroma 
Async & retriesTemporalApache‑2.0Durable workflow engine; restarts agents exactly where they crashed 

All seven pieces are free to install and run offline.

30‑Minute Quick‑Start

Prereqs: macOS/Linux, 16 GB RAM, Python 3.10, Homebrew/apt + Docker.

Step 0.  Pull a local model

brew install ollama                # or curl script on Linux

ollama run mistral:7b              # downloads ≈4 GB and starts REST server

The Ollama runtime wraps GGUF files so they stream efficiently on CPU/GPU  .

Step 1.  Stand up a unified LLM endpoint

pip install litellm

litellm –model ollama/mistral –api_base http://localhost:11434

Now any library that expects an OpenAI‑style /v1/chat/completions URL will talk to your local model — cost tracking and guard‑rails included  .

Step 2.  Install the orchestrator

pip install langgraph                # or: pip install crewai

LangGraph lets you describe agents and edges as a directed graph; every node can pause, stream or retry without extra code  .

Step 3.  Add a vector memory

pip install chromadb

python -m chromadb –path ./db       # starts local serverless store

Chroma’s Apache licence keeps the stack 100 % FOSS  .

Step 4.  Code a three‑agent micro‑flow

from langgraph.graph import StateGraph

from litellm import completion

import chromadb, os

os.environ[“OPENAI_API_BASE”] = “http://localhost:4000”  # LiteLLM proxy

memory = chromadb.Client().get_or_create_collection(“project”)

def planner(state): …

def researcher(state): …

def drafter(state): …

def reflector(state): …

g = StateGraph()

g.add_node(“plan”, planner)

g.add_node(“research”, researcher, after=”plan”)

g.add_node(“draft”, drafter, after=”research”)

g.add_node(“reflect”, reflector, after=”draft”).loop_until(criteria)

g.compile().invoke({“objective”: “Write launch email”})

Outcome: a self‑critiquing email generator that never touches the public cloud.

Step 5.  Make it durable & asynchronous

Wrap the invoke() call in a Temporal Workflow to survive reboots and network blips:

@workflow.defn

class EmailCampaignWF:

    @workflow.run

    async def run(self, objective):

        return await g.invoke({“objective”: objective})

Temporal checkpoints every step, restarts failed tasks, and scales workers horizontally  .

Total elapsed wall‑clock ≈ 30 minutes once dependencies are cached.

Performance & Cost Snapshot

ResourceTypical Footprint
RAM at idle (Mistral 7B Q4)~9 GB CPU, 7 GB GPU
Tokens/sec (M1 Pro, llama.cpp)30‑35 t/s
Monthly cost$0 cloud spend; only your electricity bill

After the first gigabytes, every additional token is essentially free — a stark contrast to $2‑$8 per million output tokens on GPT‑4‑class APIs.

Common Pitfalls & Fixes

SymptomRoot CauseFix
“CUDA out of memory”Q4 model too bigUse mistral.Q2_K.gguf or CPU inference
Agents loop foreverNo reflection stop conditionAdd max_iterations or a reward threshold
Requests time‑outLiteLLM proxy defaults to 30 sLITELLM_TIMEOUT=120 env var

Where to Go Next

  1. Policy Guard‑rails — integrate an open policy LLM (e.g., caispp/policies) as a Governor node.
  2. Multi‑model routing — point LiteLLM at both local Mistral and an occasional cloud GPT‑4o for “hard” tasks.
  3. Observability — scrape LangGraph traces into Grafana or use Temporal’s built‑in Web UI.
  4. Fleet Scaling — swap Chroma for Milvus when you hit millions of embeddings  .

Bottom Line

You no longer need a VC budget to explore agentic AI. In half an hour, a single developer can:

  • run a modern 7 B model locally;
  • expose it via LiteLLM’s unified API with budgets & guard‑rails;
  • orchestrate multiple agents and memory with LangGraph (or CrewAI);
  • achieve crash‑proof durability using Temporal;
  • store vectors in a free Apache‑licensed database.

All seven layers are 100 % open source and privacy‑preserving.  Micro‑orchestration puts an enterprise‑grade AI control‑tower on your laptop — and leaves your AWS bill at $0.

You May Also Like

The Limits of LLMs: What AI Still Can’t Do in the Workplace

Gazing into the future of AI reveals persistent gaps in LLM capabilities that may challenge their integration into workplaces—discover why.

The Rise of the AI Coworker: When ChatGPT Joins Your Team

Many teams are integrating AI coworkers like ChatGPT, revolutionizing workflows—discover how this shift could transform your work life.

Agentic AI for B2B: Why the Gold Rush Is in Vertical, Workflow‑Native Agents

(Research roundup & strategic guidance – June 2025) 1 | What “Agentic AI” Means in a…

Age of the Agent Orchestrator – Why Agent Orchestrators Will Rule 2025

What if I told you that everything you’ve learned about success in…